column value
Name The Levitating Ball
User2 臺灣國際科展作品
User3 2014 年
User4 物理與天文學
User5 二等獎
User6 Wellington High School
User7
User8 Lily Mason-Mackay
User9
Detail This project was inspired by a tournament call the International Young Physicist’ Tournament (IYPT). The problem could be broken into two aims: ‘Investigate the forces that cause a ball to levitate in a titled airstream’ and ‘optimize the system for the maximum angle of tilt that results in a supported ball’. The first stage of the investigation was research and learning. Two fluid mechanics courses online were used to build a basic of knowledge of the subject. Next a force diagram was created to model the forces acting on the ball. The diagram identified a force called the lift force that must be acting on the ball to be supported. There were three contending theories that could explain the lift force: The Bernoulli theory, the Coanda theory and the Magnus theory. A practical investigation was then instigated to differentiate between these three theories. Since the Magnus theory is only applicable if the ball is spinning in the airstream, this theory was isolated by changing the center of mass of the ball but keep everything else constant (this allowed control of how much the ball spun in the airstream). Changing the center of mass didn’t impact on the maximum angle of tilt at all, proving that the spinning of the ball isn’t producing a significant amount of lift, and therefore the Magnus theory couldn’t be a cause for lift. Because further testing couldn’t isolate the Coanda and Bernoulli theories, a solution was developed to explain why the two remaining theories might co-exist. Further testing methods have been designed to investigate this possibility in more depth. To meet the second aim of this project, an investigation was launched to see how parameters affected the maximum angle that the ball could be supported at. The parameters investigated were: Ball radius, ball mass, ball surface, air speed and airstream diameter. A lot of time was spent creating a reliable experimental method. The method could be used to support a ball in an air stream, slowly tilt the air stream, and then measure the angle of tilt the moment that the ball fell out. After experimentation, a table was created to describe how the listed parameters affect the maximum angle of tilt that a ball can be supported at. Explanations were proposed for why each parameter affected this angle. Future experiments have been devised to build a deeper understanding of the effects of a wider range of parameters.
User34 二等獎
User35 紐西蘭
User38 160036.pdf
User10
User11
User39
User31(同USER3) 2014年
User32(同USER4) 物理與天文學
User37(NAME)