column value
Title 在光合生物反應器中具環境影響力微藻對二氧化碳利用性之研究
Abstract 本計畫共執行二年(93和94年度),由輔仁大學研發團隊與人宇生物科技公司共同合作,主要的目標在探討以藻類生物進行CO2資源化利用的可行性。第一年度技術開發主要在設計出一套串聯式200公升藻類固定CO2光合生物反應器,以及篩選固定CO2效率較強的藻種;第二年度技術成果主要在結合生物固定化技術和藻類培養技術,在200公升光合生物反應器中進行藻類Microcystis利用固定CO2並轉化為高價值microcystins。此二年計畫之主要研究成果綜合如下:第一年度主要技術成果:1、篩選20株藻類,其中藻類FJ03有較強的固定CO2效率。藻類FJ03在CO2濃度為10%時,有最好的生長情形。2、在200公升反應器進行藻類FJ03連續固定CO2,操作條件為細胞濃度大約維持在OD600值約0.7,CO2濃度10%,曝氣量為0.616 L/sec,則藻類FJ03固定CO2效率為0.371 g-CO2/L/day,每天可以生產藻類細胞乾重44.235公克。3、「串聯式200公升藻類固定CO2光合生物反應器」已於2004年11月30日送件至中華民國經濟部智慧財產局申請專利,申請案號093136923。4、成果已撰寫一篇研究論文「綠藻FJ03培養基營養組成之研究」發表於「輔仁學誌」, ISSN 1028-5679,刊登於2004年12月第三十八期(p.197-209)。5、計畫成果亦於2005年9月7-8日發表於「The 2nd UNSW/TPRI Workshop」國際會議(台灣電力公司主辦)。2005年11月11日發表二篇論文(C-12和EP-10)於「2005輸送現象及其應用研討會暨過慮技術最新發展論壇」(台灣大學)。第二年度主要技術成果:1、藻類Microcystis在CO2濃度0.03%(空氣)和5%中皆有良好的生長情形,濃度10%以上的CO2並不適合用於培養藻類Microcystis。2、藻類Microcystis連續流生物膜光合反應器中藻類動力模式模擬值與實驗值誤差皆為5%以內,統計上為可接受的結果,可作為未來連續流光合反應器實廠放大設計最佳的運算工具。3、藻類Microcystis連續流生物膜光合反應器動力模式實驗結果推導較佳之二氧化碳利用和microcystins生產之分析:當1個50 L反應槽流速(Q)設定為0.375 L/h時,光合生物反應槽中藻類Microcystis細胞濃度達到穩定時OD600值為0.92,推導出200 L藻類連續流生物膜光合反應器每1天利用CO2之量為7.743 g-CO2/day,可生產microcystins為0.4635 mg/day。4、由本計畫成果推估,若建立有營運規模之12,000 L培養系統,則估算每1天固定利用CO2之量為464.58 g-CO2/day,Microcystis藻細胞乾重生產率為278.1 g/day,microcystins生產率至少為278.1 mg/day,市場值約11.124萬美元。預估目前全球市場至少約有20公克之需求量,若市場佔有率預估有70%,一年市場價值約560萬美元。
EngTitle Utilization of Carbon Dioxide by Microalgae with Environmental Impact in Photobioreactor
EngAbstract In this 2nd-year project, the research team of Fu-Jen University cooperating with Zen-U company applies bio-immobilization and microalgal culture technologies in converting CO2 to valuable microcystins using Microcystis. The results for the project are listed as followings:1. In term of inorganic carbon sources, the results showed Microcystis.preferred CO2 and possessed the specific growth rate, 0.0192 h-1 ,.when used NaNO3 as a nitrogen source. 2. Using Fractional Factorial Design to analyze nutrient factors, the results showed that NaNO3 is significantly the positive factor affecting the growth of Microcystis. 3. Comparing with different concentrations of NaNO3, the medium IBI adding with 2.0 g/l NaNO3 gave Microcystis with the optimal growth. 4. Microcystins isolated from Microcystis was analyzed by HPLC and found with the peak at 12.23 minutes of the retention time. 5. Microcystis can grow well in the media sparging with 0.03% and 5% of concentrations of CO2, but are inhibited in the media with more than 10% of concentrations of CO2. 6. Parameters of kinetic model for the growth of Microcystis: growth coefficient (Y) 1.1 mg-cell/mg-CO3-2, specific growth rate (m) 0.53 day-1, specific substrate utilization (k) 0.48 mg-CO3-2/mg VSS-day, death coefficient (b) 0.33 day-1, Monod half saturation coefficient (Ks) 0.06 mg-CO3-2/L.7. In the kinetic model of continuous biofilm photobioreactor for Microcystis the experimented data are statistically matched to modeling data with the standard deviation below 5%, which can be effectively applied to scale-up design.8. From results of the 200-liter continuous Microcystis-biofilm photobioreactor the better utilization of CO2 and productivity of microcystins were estimated with 7.743 g-CO2/day and 0.4635 mg/day, respectively, while flow rate Q is set on 0.375 L/h in each 50-liter tank and Microcystis biomass reached to 0.92 of OD600 value.
ProjectYear 094
SponsorOrg 永續發展室
ExecutingOrg 輔仁大學創新育成中心
PublicFullVersionURL http://epq.epa.gov.tw/project/FileDownload.aspx?fid=4400